skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yeatman, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper explores new ways to use energy shaping and regulation methods in walking systems to generate new passive-like gaits and dynamically transition between them. We recapitulate a control framework for Lagrangian hybrid systems, and show that regulating a state varying energy function is equivalent to applying energy shaping and regulating the system to a constant energy value. We then consider a simple one-dimensional hopping robot and show how energy shaping and regulation control can be used to generate and transition between nearly globally stable hopping limit cycles. The principles from this example are then applied on two canonical walking models, the spring loaded inverted pendulum (SLIP) and compass gait biped, to generate and transition between locomotive gaits. These examples show that piecewise jumps in control parameters can be used to achieve stable changes in desired gait characteristics dynamically/online. 
    more » « less
  2. This paper offers a novel generalization of a passivity-based, energy tracking controller for robust bipedal walking. Past work has shown that a biped limit cycle with a known, constant mechanical energy can be made robust to uneven terrains and disturbances by actively driving energy to that reference. However, the assumption of a known, constant mechanical energy has limited application of this passivity-based method to simple toy models (often passive walkers). The method presented in this paper allows the passivity-based controller to be used in combination with an arbitrary inner-loop control that creates a limit cycle with a constant generalized system energy. We also show that the proposed control method accommodates arbitrary degrees of underactuation. Simulations on a 7-link biped model demonstrate that the proposed control scheme enlarges the basin of attraction, increases the convergence rate to the limit cycle, and improves robustness to ground slopes. 
    more » « less